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Résumé A method to construct an optimal isomorphism between the
sets of instructions, sets of basic blocks and sets of functions in two
differing but similar executables is presented. This isomorphism can be
used for porting recovered information between different disassemblies,
recover changes made by security updates and detect code theft.

The most interesting applications in the realm of security are in malware
analysis where the analysis of a family of trojans or viruses can be redu-
ced to analyzing the differences between the variants, and in recovering
the details of fixed vulnerabilities when the vendor of the security patch
refuses to disclose details.

A framework implementing the described methods is presented, along
with empirical data about it’s performance when analyzing multiple va-
riants of the same malware and recovering vulnerability details from
security updates.

1 Introduction

While programs that compare different versions of the same source code
file have been in widespread use for many years, very little focus has so far
been placed on the importance of detecting and analyzing changes between two
versions of the same executable.

Without an automated way of detecting source code changes in the object
code and porting analysis results between disassemblies of related executables,
the party prompted with analyzing the changes is at a disadvantage : Each
”round” of reverse engineering requires a massive duplication of work done in
prior ”rounds” of analysis, while very little work is required to change the source
code and recompile.

Both malware authors of high-level-language virus families such as SoBig and
software vendors try to exploit this asymmetry : Both want to buy time, one
side to allow customers to patch software before attackers can build automated
attack tools, the other side to allow their malware to propagate before detection
signatures are available.

This paper presents a novel approach for solving this : Given two executables
A and A′, a bijective mapping between the functions in A and A′ is constructed
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by iteratively improving a partial graph isomorphism on the call-graphs of the
executables. Once that mapping is generated, a bijective mapping between the
basic blocks of a pair of functions f, f ′ is constructed by using the same iterative
improvement of a partial graph isomorphism on the flow-graph of the functions.
Finally, given a pair of two corresponding basic blocks β, β′ an isomorphism of
the instructions is generated by treating the sequence of instructions as a special
graph and proceeding as above.

2 Previous Work

Automatically analyzing and classifying changes to source code have been
studied extensively in literature before, and listing all relevant papers seems
to be out of scope for this paper. Most of this research focuses on treating the
source code as a sequence of lines, and applying a sequence-comparison algorithm
[11][12].

The problem of matching functions in two executables to form pairs has
been studied in [3,?], although focused on reuse of profiling information which
allowed the assumption of symbols for both executables being available. Other
work has been done with focus on efficient distribution of binary patches [6] [8].
Both approaches, while finding differences between two binaries, are incapable
of dealing with aggressive link-time profiling-information-based optimizations
and will generate a lot of superfluous information in case register allocation or
instruction ordering has changed. A bytecode-centric approach to find sections
of similar JAVA-code is studied in [9].

Another approach to binary comparison also dealing with graph isomor-
phisms was discussed in [13] : Starting from the entry points of an executable
basic blocks are matched one-to-one based on instructions present in them. If no
matching is possible, a change must have occurred. Due to the reliance on com-
paring actual instructions, a significant number of locations is falsely identified
as changed - the paper mentions that about 3-5 % of all instructions change bet-
ween two versions of the same executable. Furthermore, the discussed algorithm
seems to match weakly in situations where the call-graph has a low connectivity
or significant changes in the order of instructions are present.

The work presented in this paper is a direct extension of the methods and
code presented in [10].

3 Structural Code Analysis

Comparing different variants of the same executable (or just two arbitrary
executables that share a significant amount of code) has to deal with the problem
of the same source code being compiled to conceivably very different representa-
tions on the assembly level. A number of common changes that occur between
two variants of the same executable are :

1. Different Register Allocation
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Depending on the compiler’s optimization settings and the changes in the
code, different registers will be assigned to identical instructions.

2. Instruction Reordering

Depending on the compiler’s modelling of the pipelining of the CPU, indi-
vidual instructions will be reordered.

3. Branch Inversion

In many situations, the compiler will attempt to optimize the alignment of
basic blocks by inverting the condition of a branch and exchanging the two
basic blocks to which this branch could lead.

Obviously, significantly more severe changes can occur. The main observation
on which the methods presented in this paper is built is that the callgraph of
an executable stays largely the same3, even if compiled with a different compiler
and for a different architecture.

Instead of focusing on the concrete assembly level instructions obtained via
disassembly, the focus of the presented approach are the structural properties of
the executable, specifically the basic abstraction of functions and basic blocks
as well as their relation to each other.

3.1 Notation

This paper will use quite a few terms from graph theory, thus a few notations
need explaining :

The notation P(S) means the power set of a given set S.
Whenever the word ”graph” is used in this paper, it refers to a possibly cyclic

directed graph consisting of a set of nodes and a set of edges. A simple capital
letter is used to denote a graph, and the superscripts to the letter are used if
either the set of nodes or edges is referred to.

Thus graph G consists of the set of nodes Gn := {Gn
1 , . . . , Gn

m} and the set
of edges Ge := {Ge

1, . . . , G
e
k|G

e
i ∈ Gn ×Gn}.

For later use, we define the functions

up : Gn → P(Gn)

down : Gn → P(Gn)

which map a given node Gn
i to the subset of Gn that are direct ”parents” of Gn

i

respective to the subset of Gn that are direct ”children” of Gn
i .

3.2 An executable as Graph of Graphs

We treat the executable as a graph of graphs. This means that the executable
is viewed as a multi-edged directed graph A which has all functions retrieved

3 It is known that some modern compilers can change the callgraph significantly
through inlining even complex functions. Studying the applicability of the presented
methods needs to be done once code generated by these compilers becomes more
widely used
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from the disassembly as nodes and the call relations between these functions as
edges.

Every node An
i ∈ An is a graph itself, with it’s nodes consisting of the indi-

vidual basic blocks in the disassembly and the edges representing their branch
relations. Such graphs are usually called control flow graphs or short cfg.

Each basic block itself (this means each node in the graph represented by
An

i ) is a graph as well, albeit of very simple form : A sequence of assembly-level
instructions.

3.3 Retrieving the information

In order to retrieve these graphs from an executable, a good disassembly of
the binary is needed. The industry standard for disassembly is [7], mainly due
to its excellent cross-platform capabilities coupled with a programming inter-
face that allows retrieval of the needed information without knowledge of the
underlying CPU or its assembly. This facilitates implementing the described
algorithms only once but testing them on executables built for different archi-
tectures.

Indirect calls and disassembly problems In many cases creating a complete
call-graph (which represents all possible relations between the different func-
tions) from a binary is not trivial. Specifically indirect subfunction calls through
tables (very common for example in C++ code that uses virtual methods) are
hard to resolve statically.

In the presented approach, such indirect calls whose targets cannot be re-
solved statically, are simply ignored and treated as a regular assembly-level ins-
truction. In practice, this does not yield many problems. The big risk is to have
non-connected sections of the call-graph in which not a single fixedpoint was
generated which would lead to that subsection of the graph not being properly
matched. Due to the many different properties that can be used to generate
fixedpoints (see Section 4), this is not a problem in practice.

4 Structural Matching

The general idea of the presented approach is the following : Given two exe-
cutables, the graphs A and B are constructed. Then a number of ”fixedpoints”
in the two graphs are created : Two elements (one each from An and Bn are
searched that can be easily determined to represent the same item in both exe-
cutables.

These fixedpoints are used for creating more fixedpoints iteratively until the
mapping can no longer be improved.

Once we have matched the maximum number of functions, we can match
basic blocks in the same manner. Since we already have an isomorphism that
allows us to retrieve two associated functions, we just have to match the nodes
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of two cfg’s by identifying fixedpoints and using that information for matching
more and more nodes.

Once we are down to the basic block level, we can treat two matching basic
blocks as graph (of a very simple form) again, and construct an isomorphism in
much the same manner.

4.1 Selectors

A Selector is essentially just a mapping that, given a node An
i ∈ An of a

graph and a set of nodes in another graph returns either one element from the
given set or the empty set, e.g.

s : An ×P(Bn)→ Bn ∪ ∅

The selector’s job is to select a single node from a set of given nodes that is most
”similar” to An

i , or, if more than one candidates with the same ”similarity”
exists, to select nothing at all.

It is intuitively clear that the probability of a selector returning an empty
set rises with larger input sets.

4.2 Properties

A Property π is defined as a mapping that maps two graphs A and B to
subsets of their node sets :

π(A, B)→ (A′n, B′n) with A′n ⊂ An and B′n ⊂ Bn

The purpose of such a mapping is reducing the size of the sets used by a selector
in order to improve the probability for the selector to return a non-empty result.

4.3 Graph Isomorphism via fixedpoints and propagation

Generating fixedpoints Given a selector s, an approximate graph isomor-
phism p : An → Bn can be constructed by constructing an initial isomorphism
p1 and then using this to construct improved versions until one reaches a result
that can not be further improved.

The initial isomorphism p1 : An → Bn is constructed by simply defining
p1(x)→ s(x, Bn).

This simple construction can be significantly improved if a number of pro-
perties are available. Let Π = {π1, . . . , πj} be a set of properties. An improved
initial isomorphism would be constructed as follows :

for π ∈ Π do
(K, L)← π(A, B);
for x ∈ K do

define p1(x)→ s(x, L)
end

end
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Propagation of fixedpoints Given the initial mapping p1, further improved
isomorphisms pi can now be constructed iteratively in the following manner :

Input : pn−1, s, A, B

Result : pn

S ← {x ∈ An|pn−1(x) 6= ∅};
for x ∈ S S do

P ← up (x);
K ← up ( pn−1(x));
for y ∈ P do

if s(y, K) 6= ∅ then
define pn(y)→ s(y, K)

end

end

end

In plain words the above algorithm retrieves nodes for which pn−1 has a
useful mapping, and then examines only the sets nodes that are direct ”parents”
of a node and it’s image under pn−1. Since these sets are significantly smaller
than the sets examined beforehand, the odds for s returning a non-empty result
are enhanced.

The above algorithm can clearly be run with down instead of up, and best
results are achieved by alternating between the two.

4.4 Small Primes Product (SPP)

One of the most common changes between two basic blocks in two executables
is a change in instruction ordering. An algorithm to quickly determine if two
basic blocks (or even two functions) have the same instructions (but possibly in
different order) is therefore of high value – it can be directly used to generate
additional initial fixedpoints.

The problem To phrase the problem more concisely :
Let A := {α1, . . . , αm} be an alphabet with m different elements. Let Sn be

the permutation group in n elements. Given two words of length n, say, a, b ∈ An,
one wants to determine if a permutation σ ∈ Sn exists so that σ(a) = b. We will
denote the k-th letter of a word a by writing ak.

A first solution Let Pm := {3, . . . , ρm} be the set of the first m odd prime
numbers. Furthermore consider the mapping

τ : A → Pm, τ(αi) ρi

which assigns a unique small prime number to each element in the alphabet. We
then calculate the product of all letters in a, b and verify that

n
∏

i=1

τ(ai) =

n
∏

i=1

τ(bi)
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The above condition is equivalent to the existence of a σ with σ(a) = b because
of the uniqueness of prime decompositions and the fact that multiplication is
commutative.

Adjusting to reality : mod 264 arithmetic Unfortunately large integer
arithmetic is rather expensive, and the above method is thus not directly fea-
sible for real-world applications. If we limit all arithmetic above to calculations
mod 264, we can use the normal in-register multiplication of our x86-CPU. This
removes the expense of large integer arithmetic at the cost of risking to claim
falsely that a σ with σ(a) = b exists.

Quantifying the exact risk is tricky as it depends on the probabilities of the
occurrence of a particular α. We can nonetheless calculate an upper boundary
for the risk of a false claim under the assumption that all α ∈ A occur with
identical probability.

For any given word c the following inequation holds :

n
∏

i=1

τ(ci) ≤ pn
m (1)

The proposed algorithm will falsely claim that σ with σ(a) = b exists if and
only if

n
∏

i=1

τ(ai) = k264 + c (2)

n
∏

i=1

τ(bi) = j264 + c (3)

with k 6= j, c < 264, a 6= b. We can assume without loss of generality that k > j.
From the above it becomes evident that there is a maximum of k − 1 values of
∏n

i=1 τ(b) which satisfy equation (3). From (1) it follows that

k ≤
pn

m

264

The total number l of words c(1), . . . , c(l) ∈ A
n for which

n
∏

i=1

τ(c(1),1) 6= · · · 6=
n

∏

i=1

τ(c(l),1)

holds is given by l =

(

n + m− 1
n

)

as we can model the above product as a

simple combination with repetition.
We can thus claim that the odds ρ of two randomly chosen words a 6= b

satisfying
n

∏

i=1

τ(ai) ≡
n

∏

i=1

τ(bi) mod 264



8 Actes du symposium SSTIC05

is smaller or equal to

(
pn

m

264
− 1)

(

n + m− 1
n

)

−1

= (
pn

m

264
− 1)

(m− 1)!n!

(n + m− 1)!

One should keep in mind that this is a very rough upper boundary which can
be improved significantly. Such improvement would be beyond the scope of this
paper.

The important conclusion to draw is that using the proposed method on an
alphabet with 100 elements is definitely safe for words that are shorter than 14
elements, and very likely for a significant stretch beyond that.

SPP and code similarity Our implementation uses SPP for identifying se-
quences of instructions with matching mnemonics. We use the disassembler-
assigned index for each mnemonic to index into a table with small primes, and
calculate the result as an unsigned long long. This is done on both the function
and the basic block level.

4.5 Example Selectors and Properties

Generic Properties Many different properties can be thought of. In our
example implementation, we have used several different properties for graphs
A, B to good effect, with the best results coming from combining all of the
below.

All mappings are in the form of

π1 : (An, Bn)→ ({An
i , . . . , An

k}, {B
n
j , . . . , Bn

l })

with certain criteria that the An
i , Bn

i have to fulfill. For brevity we only list the
criteria and a short explanation of their meanings :

1. k-Indegree Nodes / k-Outdegree Nodes

](up(An
i )) = k and ](up(Bn

i )) = k

This means that we select nodes whose indegree is exactly k. Replacing up
with down yields all nodes with outdegree of excatly k. Note that selecting
a k of zero will retrieve all root (or alternatively all leaf) nodes.

2. Recursive Nodes

An
i ∈ up(An

i ) and Bn
i ∈ up(Bn

i ) = 0

This selects nodes that have a link to themselves, selecting only functions
that recursively call themselves.
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Properties specific to callgraphs Most properties are not specified on abs-
tract graphs but use the underlying assembly code for specifying properties like
the following :

1. Same Name

Clearly the most obvious property : Many nodes in the callgraph of an ap-
plication will have names, either from debug information that is available or
because of import/export information in the executable.

2. Same String Reference

Nodes in the callgraph can be selected by common string references, indica-
ting functions that all contain code referring to the same string.

3. Same SPP

Nodes in the callgraph can be selected by common SPP.

Properties specific to CFGs Both the Same String Reference and the Same
SPP property can be directly applied to CFGs. In addition to these two, the
following property has shown to be useful :

1. Same subfunction call

Nodes in the CFG may contain calls to subfunctions.

At the point where CFG-isomorphisms are calculated, a good isomorphism
pc for the callgraph is already available. One can therefore select nodes that
call subfunctions that are the same under pc.

Properties specific to the Instruction-level When matching instructions
on the instruction-level-graph (which is in essence just a sequence), the same
string reference and same subfunction call properties are used.

A selector for the callgraph We associate a 3-tuple with each node in the
callgraph. This 3-tuple consists of the number of basic blocks in the function, the
number of edges linking them to form the CFG, and the number of subfunction
calls found in the basic blocks.

The selector for callgraph nodes works simply as follows : The 3-tuples are
interpreted as simple vectors in euclidian space, and the euclidian distance bet-
ween the tuple of each element in the supplied set and the tuple of the supplied
element is calculated. If a unique tuple with minimal distance is found, the
selector returns the associated node.

More formally :

sc(x, A) :=

{

a si ∃a ∈ A, ∀b ∈ A, b 6= a, |x− a| < |x− b|
∅ sinon

A selector for the CFGs In the case of cfgs we work again with 3-tuples of
natural numbers. The construction of this selector is based on the observation
that for small changes in the function, the changes to the cfg are often localized



10 Actes du symposium SSTIC05

to a region of the graph. This implies that for a given basic block a, the change
will be either below or above that block. This implies that either the number
of basic blocks on the shortest path to a or the number of basic blocks on the
shortest path from a to the end of the function remains constant.

The second observation was that most functions include a significant amount
of error checking which is represented in the cfg as paths bypassing most of the
functions and jumping directly to the exit node.

We thus associate a 3-tuple with each node in the cfg. This 3-tuple consists
of the number of blocks on the shortest path to a function exit, of the number
of blocks on the shortest path from the functions entry point, and the number
of subfunction calls made in that basic block.

The disadvantage with this approach is that an inserting a basic block into
the cfg can skew the signature of all blocks that are dominated by it.

In order to deal with this issue, a special selector is used : It takes a special
δ-Parameter. The definition is more or less the same as in the calltree situation
then :

sc(x, A, δ) :=
{

a si ∃a ∈ A, ∀b ∈ A, b 6= a, |x− (a + δ)| < |x− (b + δ)|
∅ else

During the propagation of fixedpoints as described in 4.3.2, the δ parameter
is calculated by calculating the difference between the two signatures in the
fixedpoint.

A selector for the Instruction-Level For building the instruction-level iso-
morphism, we essentially take the distance to the entry and the distance to the
exit of a basic block as signature and apply the same algorithm as described
above.

5 Applications

The capability of building an isomorphism down to the instruction level offers
many interesting applications.

5.1 Porting comments for analysis of malware variants

For demonstration purposes, we obtained two samples of the Bagle trojan,
specifically Bagle.X and Bagle.W. A thorough analysis of the Bagle.W-sample
was conducted, with a detailed disassembly in which all functions were properly
named and most of the database thoroughly commented.

We then produced an untouched disassembly of Bagle.X : No meaningful
function names were present, and the disassembly was completely uncommented.

After running our implementation of the described algorithms on the two
disassemblies, all but 6 functions in the untouched disassembly had been suc-
cessfully associated with their counterpart in the already-analyzed disassembly.
Furthermore, only 3 functions had changed in any significant manner.



Actes du symposium SSTIC05 11

Out of the 1524 comments in the matched functions, all but 10 were success-
fully transferred between the disassemblies.

All in all, the task of analyzing the Bagle.X variant was reduced to examining
three changed functions and six (very small) unmatched functions. Almost all
function names and comments that had been created for the previous database
could be re-used. Running our analysis took less than 30 seconds.

5.2 Recovering vulnerability information

H323ASN1.DLL After the NISCC published information about vulnerabili-
ties in multiple H.323 parsers, the question arose where the relevant mistake in
Microsofts ISA Server product was. Microsoft refuses to publish detailed infor-
mation about the vulnerability they fix. According to the NISCC report, the
problem was located in ASN.1 decoding.

Both the pre- and post-patch versions of H323ASN1.DLL were analyzed, and
a total of 8 changed functions (out of 1655) detected.

The changes could be classified into two cathegories :

1. Introduced sanity checks on untrusted values specifying the number of words
to decode from an ASN.1 stream

2. Introduced sanity checks prior to calls to ASN1PERDecZeroTableCharString-
NoAlloc()

In the second case, a 32-bit integer from the ASN.1 stream is passed on to
ASN1PERDecZeroTableCharStringNoAlloc() as second argument. The patched va-
riant introduces a range check to make sure this second argument is smaller than
129.

A closer inspection of ASN1PERDecZeroTableCharStringNoAlloc() reveals that
the function calculates the size of memory allocation based on the formerly un-
trusted value – an attacker was able to set this value in a manner that the
calculation would exceed MAXUINT and thus be of very small size. The sub-
sequent copy-operation would then corrupt the heap, allowing an attacker to
gain control in the next round of heap consolidation. Instead of fixing the issue
at the core (e.g. in the MSASN1.DLL library), a range check was added into the
calling application (H323ASN1.DLL).

The update thus disclosed to an examining party that every call to ASN1PER-
DecZeroTableCharStringNoAlloc() needs to have argument checking done before
the call is issued. A short system-wide scan was conducted to see if other ap-
plications besides ISA Server use the relevant function in dangerous way. Two
other instances were found : The Windows-internal H.323 Multimedia Provider
Library (which allows arbitrary applications to easily process H.323 data) and
Microsoft’s Video Conferencing Software Netmeeting. Neither does proper range
checking on the function in question.

The result was that the update to H323ASN1.DLL fixed one bug but alerted
anyone with the capability to analyze patches to two further remotely exploitable
vulnerabilities which were not fixed at the time.
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Microsoft was contacted and the issues were fixed a few months later, in
MS04-11.

The total analysis took less than 3 hours time, the actual running time of
the algorithms less than 5 minutes.

SSL/PCT Parser In April, Microsoft issued an update to SCHANNEL.DLL,
the library responsible for handling SSL communication. According to their secu-
rity bulletin, they removed a security problem that allowed attackers to take full
control of any computer running an SSL-based server. No technical details were
provided, except that the problem itself lay in a part of the library responsible
for parsing PCT packets 4.

More than 20 changed functions were detected in total, but only one with
a name that implied it was involved with PCT parsing. An examination of
the function Pct1SrvHandleUniHello() revealed that the old version had taken a
string, NOT’ed every character and appended it to the original string. The new
version was changed in such a manner that it ensured the combined string would
not exceed 32 characters.

Detecting and understanding the vulnerability (a vanilla stack-smash with
EIP overwrite) took less than 30 minutes. Subsequently, code was constructed
to reach the appropriate location in the binary. Within 5 hours, EIP could be
overwritten with an arbitrary value, and within 10 hours of the start of the
analysis, a program that reliably exploited the vulnerability was created.

6 Summary

It has been shown that nondisclosure of vulnerability information is not a
promising deterrent to would-be-attackers and that security updates can be re-
verse engineered in relatively little time (given the right tools). It has furthermore
been shown that special care has to be taken when releasing security updates,
as the information in the patch has to be assumed to be public. An incomplete
bugfix can do more harm than good by disclosing the existence of other (unfixed)
bugs along with the fix.

The presented work furthermore implies that the common practice of leaving
one or two weeks between the publication of a security update and installing the
patch is highly dangerous.

Leaving the politics of vulnerability disclosure out, it has been shown that
analysis of binaries based only on structural properties of the code is a promising
field of research, as it allows analysis of executable code without the need to
abstract to an intermediate language or CPU-specific analysis engines.

4 PCT is a legacy-protocol that was obsoleted by TLS and is supported for legacy
browsers
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